If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=8x+96
We move all terms to the left:
3x^2-(8x+96)=0
We get rid of parentheses
3x^2-8x-96=0
a = 3; b = -8; c = -96;
Δ = b2-4ac
Δ = -82-4·3·(-96)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{19}}{2*3}=\frac{8-8\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{19}}{2*3}=\frac{8+8\sqrt{19}}{6} $
| 12+1=3y+10+7y | | 6x+12=6x+24+2x | | 2×=x+10 | | 10x^2-80x+7=0 | | 6x/3+1/3+1=x/6+-3/6 | | 6x+-2x=8 | | 3x-1=50-x | | 5e+9=5+3e | | t/1.5=4 | | 4x+4(17/7)=16 | | x-1/2-3x-x2/3=1/3 | | 5(1+p)=2(p-5) | | |3x+5|=|x+71 | | 2.5(2z+5)=4(z+2.5) | | 4(5+t)+(t)+9(t-2)=19 | | 4(4-2t)+(3-t)+9(t)=19 | | 6x-2×=8 | | (5-x)(8-x)-4=0 | | 9×(3k−4)=45 | | (7*z+3)=4 | | R=5/8t-9 | | 3(x+1)+8(x+2)–x=30. | | (3+2√2i)-(2-2*2√2i)=0 | | 90=1/2x+37 | | 36=14x-6 | | 5+4g+8=1(g=3g=1g=2 | | 4m-5=16 | | x2–18x+5=0 | | (x+1)(2x-2)=0 | | 3x+8+5x+8+37x=20x+8 | | (2x+1)+(x-1)=x+2 | | 6x+3x+1x=60 |